Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525972

RESUMO

Inter-individual variation largely influences disease susceptibility, as well as response to therapy. In a clinical context, the optimal treatment of a disease should consider inter-individual variation and formulate tailored decisions at an individual level. In recent years, emerging organoid technologies promise to capture part of an individual's phenotypic variability and prove helpful in providing clinically relevant molecular insights. Organoids are stem cell-derived three-dimensional models that contain multiple cell types that can self-organize and give rise to complex structures mimicking the organization and functionality of the tissue of origin. Organoids represent thus a more faithful recapitulation of the dynamics of the tissues of interest, compared to conventional monolayer cultures, thus supporting their use in evaluating disease prognosis, or as a tool to predict treatment outcomes. Additionally, the individualized nature of patient-derived organoids enables the use of autologous organoids as a source of transplantable material not limited by histocompatibility. An increasing amount of preclinical evidence has paved the way for clinical trials exploring the applications of organoid-based technologies, some of which are in phase I/II. This review focuses on the recent progress concerning the use of patient-derived organoids in personalized medicine, including (1) diagnostics and disease prognosis, (2) treatment outcome prediction to guide therapeutic advice and (3) organoid transplantation or cell-based therapies. We discuss examples of these potential applications and the challenges associated with their future implementation.

2.
Radiother Oncol ; 193: 110117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453539

RESUMO

BACKGROUND AND PURPOSE: Although proton therapy is increasingly being used in the treatment of paediatric and adult brain tumours, there are still uncertainties surrounding the biological effect of protons on the normal brain. Microglia, the brain-resident macrophages, have been shown to play a role in the development of radiation-induced neurotoxicity. However, their molecular and hence functional response to proton irradiation remains unknown. This study investigates the effect of protons on microglia by comparing the effect of photons and protons as well as the influence of age and different irradiated volumes. MATERIALS AND METHODS: Rats were irradiated with 14 Gy to the whole brain with photons (X-rays), plateau protons, spread-out Bragg peak (SOBP) protons or to 50 % anterior, or 50 % posterior brain sub-volumes with plateau protons. RNA sequencing, validation of microglial priming gene expression using qPCR and high-content imaging analysis of microglial morphology were performed in the cortex at 12 weeks post irradiation. RESULTS: Photons and plateau protons induced a shared transcriptomic response associated with neuroinflammation. This response was associated with a similar microglial priming gene expression signature and distribution of microglial morphologies. Expression of the priming gene signature was less pronounced in juvenile rats compared to adults and slightly increased in rats irradiated with SOBP protons. High-precision partial brain irradiation with protons induced a local microglial priming response and morphological changes. CONCLUSION: Overall, our data indicate that the brain responds in a similar manner to photons and plateau protons with a shared local upregulation of microglial priming-associated genes, potentially enhancing the immune response to subsequent inflammatory challenges.


Assuntos
Terapia com Prótons , Humanos , Criança , Ratos , Animais , Prótons , Microglia , Relação Dose-Resposta à Radiação , Raios X
3.
Cell Rep ; 43(2): 113764, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358885

RESUMO

Over half of patients with brain tumors experience debilitating and often progressive cognitive decline after radiotherapy treatment. Microglia, the resident macrophages in the brain, have been implicated in this decline. In response to various insults, microglia can develop innate immune memory (IIM), which can either enhance (priming or training) or repress (tolerance) the response to subsequent inflammatory challenges. Here, we investigate whether radiation affects the IIM of microglia by irradiating the brains of rats and later exposing them to a secondary inflammatory stimulus. Comparative transcriptomic profiling and protein validation of microglia isolated from irradiated rats show a stronger immune response to a secondary inflammatory insult, demonstrating that radiation can lead to long-lasting molecular reprogramming of microglia. Transcriptomic analysis of postmortem normal-appearing non-tumor brain tissue of patients with glioblastoma indicates that radiation-induced microglial priming is likely conserved in humans. Targeting microglial priming or avoiding further inflammatory insults could decrease radiotherapy-induced neurotoxicity.


Assuntos
Encéfalo , Microglia , Humanos , Ratos , Animais , Microglia/metabolismo , Imunidade Inata
4.
Neuropharmacology ; 247: 109862, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325770

RESUMO

Adenosine A2A-receptors (A2AR) and dopamine D2-receptors (D2R) are known to work together in a synergistic manner. Inhibiting A2ARs by genetic or pharmacological means can relief symptoms and have neuroprotective effects in certain conditions. We applied PET imaging to evaluate the impact of the A2AR antagonist KW6002 on D2R availability and neuroinflammation in an animal model of Parkinson's disease. Male Wistar rats with 6-hydroxydopamine-induced damage to the right striatum were given 3 mg/kg of KW6002 daily for 20 days. Motor function was assessed using the rotarod and cylinder tests, and neuroinflammation and dopamine receptor availability were measured using PET scans with the tracers [11C]PBR28 and [11C]raclopride, respectively. On day 7 and 22 following 6-OHDA injection, rats were sacrificed for postmortem analysis. PET scans revealed a peak in neuroinflammation on day 7. Chronic treatment with KW6002 significantly reduced [11C]PBR28 uptake in the ipsilateral striatum [normalized to contralateral striatum] and [11C]raclopride binding in both striata when compared to the vehicle group. These imaging findings were accompanied by an improvement in motor function. Postmortem analysis showed an 84% decrease in the number of Iba-1+ cells in the ipsilateral striatum [normalized to contralateral striatum] of KW6002-treated rats compared to vehicle rats on day 22 (p = 0.007), corroborating the PET findings. Analysis of tyrosine hydroxylase levels showed less dopaminergic neuron loss in the ipsilateral striatum of KW6002-treated rats compared to controls on day 7. These findings suggest that KW6002 reduces inflammation and dopaminergic neuron loss, leading to less motor symptoms in this animal model of Parkinson's disease.


Assuntos
Doença de Parkinson , Purinas , Ratos , Masculino , Animais , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Dopamina , Receptor A2A de Adenosina/metabolismo , Doenças Neuroinflamatórias , Adenosina/metabolismo , Racloprida , Ratos Wistar , Oxidopamina/toxicidade
5.
Aging Cell ; 23(3): e14066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234228

RESUMO

Progressive neurocognitive dysfunction is the leading cause of a reduced quality of life in patients with primary brain tumors. Understanding how the human brain responds to cancer and its treatment is essential to improve the associated cognitive sequelae. In this study, we performed integrated transcriptomic and tissue analysis on postmortem normal-appearing non-tumor brain tissue from glioblastoma (GBM) patients that had received cancer treatments, region-matched brain tissue from unaffected control individuals and Alzheimer's disease (AD) patients. We show that normal-appearing non-tumor brain regions of patients with GBM display hallmarks of accelerated aging, in particular mitochondrial dysfunction, inflammation, and proteostasis deregulation. The extent and spatial pattern of this response decreased with distance from the tumor. Gene set enrichment analyses and a direct comparative analysis with an independent cohort of brain tissue samples from AD patients revealed a significant overlap in differentially expressed genes and a similar biological aging trajectory. Additionally, these responses were validated at the protein level showing the presence of increased lysosomal lipofuscin, phosphorylated microtubule-associated protein Tau, and oxidative DNA damage in normal-appearing brain areas of GBM patients. Overall, our data show that the brain of GBM patients undergoes accelerated aging and shared AD-like features, providing the basis for novel or repurposed therapeutic targets for managing brain tumor-related side effects.


Assuntos
Doença de Alzheimer , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Qualidade de Vida , Encéfalo/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/patologia
6.
Radiother Oncol ; 190: 110028, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007043

RESUMO

BACKGROUND AND PURPOSE: Patients undergoing radiotherapy for head and neck cancer often experience a decline in their quality of life due to the co-irradiation of salivary glands. Radiation-induced cellular senescence is a key factor contributing to salivary gland dysfunction. Interestingly, mitochondrial dysfunction and cellular senescence have been reported to be strongly interconnected and thus implicated in several aging-related diseases. This study aims to investigate the role of mitochondrial dysfunction in senescence induction in salivary gland stem/progenitor cells after irradiation. MATERIALS AND METHODS: A dose of 7 Gy photons was used to irradiate mouse salivary gland organoids. Senescent markers and mitochondrial function were assessed using rt-qPCR, western blot analysis, SA-ß-Gal staining and flow cytometry analysis. Mitochondrial dynamics-related proteins were detected by western blot analysis while Mdivi-1 and MFI8 were used to modulate the mitochondrial fission process. To induce mitophagy, organoids were treated with Urolithin A and PMI and subsequently stem/progenitor cell self-renewal capacity was assessed as organoid forming efficiency. RESULTS: Irradiation led to increased senescence and accumulation of dysfunctional mitochondria. This was accompanied by a strong downregulation of mitochondrial fission-related proteins and mitophagy-related genes. After irradiation, treatment with the mitophagy inducer Urolithin A attenuated the senescent phenotype and improved organoid growth and stem/progenitor cell self-renewal capacity. CONCLUSION: This study shows the important interplay between senescence and mitochondrial dysfunction after irradiation. Importantly, activation of mitophagy improved salivary gland stem/progenitor cell function thereby providing a novel therapeutic strategy to restore the regenerative capacity of salivary glands following irradiation.


Assuntos
Doenças Mitocondriais , Qualidade de Vida , Animais , Camundongos , Senescência Celular/efeitos da radiação , Doenças Mitocondriais/metabolismo , Mitofagia , Glândulas Salivares , Células-Tronco/efeitos da radiação
7.
Neurobiol Stress ; 27: 100580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920548

RESUMO

Maternal infection during pregnancy and childhood social trauma have been associated with neurodevelopmental and affective disorders, such as schizophrenia, autism spectrum disorders, bipolar disorder and depression. These disorders are characterized by changes in microglial cells, which play a notable role in synaptic pruning, and synaptic deficits. Here, we investigated the effect of prenatal infection and social adversity during adolescence - either alone or in combination - on behavior, microglia, and synaptic density. Male offspring of pregnant rats injected with poly I:C, mimicking prenatal infection, were exposed to repeated social defeat during adolescence. We found that maternal infection during pregnancy prevented the reduction in social behavior and increase in anxiety induced by social adversity during adolescence. Furthermore, maternal infection and social adversity, alone or in combination, induced hyperlocomotion in adulthood. Longitudinal in vivo imaging with [11C]PBR28 positron emission tomography revealed that prenatal infection alone and social adversity during adolescence alone induced a transient increase in translocator protein TSPO density, an indicator of glial reactivity, whereas their combination induced a long-lasting increase that remained until adulthood. Furthermore, only the combination of prenatal infection and social adversity during adolescence induced an increase in microglial cell density in the frontal cortex. Prenatal infection increased proinflammatory cytokine IL-1ß protein levels in hippocampus and social adversity reduced anti-inflammatory cytokine IL-10 protein levels in hippocampus during adulthood. This reduction in IL-10 was prevented if rats were previously exposed to prenatal infection. Adult offspring exposed to prenatal infection or adolescent social adversity had a higher synaptic density in the frontal cortex, but not hippocampus, as evaluated by synaptophysin density. Interestingly, such an increase in synaptic density was not observed in rats exposed to the combination of prenatal infection and social adversity, perhaps due to the long-lasting increase in microglial density, which may lead to an increase in microglial synaptic pruning. These findings suggest that changes in microglia activity and cytokine release induced by prenatal infection and social adversity during adolescence may be related to a reduced synaptic pruning, resulting in a higher synaptic density and behavioral changes in adulthood.

8.
Clin Transl Radiat Oncol ; 42: 100652, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37415639

RESUMO

Background and purpose: Previous pre-clinical research using [18F]FDG-PET has shown that whole-brain photon-based radiotherapy can affect brain glucose metabolism. This study, aimed to investigate how these findings translate into regional changes in brain [18F]FDG uptake in patients with head and neck cancer treated with intensity-modulated proton therapy (IMPT). Materials and methods: Twenty-three head and neck cancer patients treated with IMPT and available [18F]FDG scans before and at 3 months follow-up were retrospectively evaluated. Regional assessment of the [18F]FDG standardized uptake value (SUV) parameters and radiation dose in the left (L) and right (R) hippocampi, L and R occipital lobes, cerebellum, temporal lobe, L and R parietal lobes and frontal lobe were evaluated to understand the relationship between regional changes in SUV metrics and radiation dose. Results: Three months after IMPT, [18F]FDG brain uptake calculated using SUVmean and SUVmax, was significantly higher than that before IMPT. The absolute SUVmean after IMPT was significantly higher than before IMPT in seven regions of the brain (p ≤ 0.01), except for the R (p = 0.11) and L (p = 0.15) hippocampi. Absolute and relative changes were variably correlated with the regional maximum and mean doses received in most of the brain regions. Conclusion: Our findings suggest that 3 months after completion of IMPT for head and neck cancer, significant increases in the uptake of [18F]FDG (reflected by SUVmean and SUVmax) can be detected in several individual key brain regions, and when evaluated jointly, it shows a negative correlation with the mean dose. Future studies are needed to assess whether and how these results could be used for the early identification of patients at risk for adverse cognitive effects of radiation doses in non-tumor tissues.

9.
Behav Brain Res ; 452: 114566, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37419332

RESUMO

Prenatal and early postnatal infection have been associated with changes in microglial activity and the development of psychiatric disorders. Here, we investigated the effect of prenatal immune activation and postnatal immune challenge, alone and combined, on behavior and microglial cell density in female Wistar rats. Pregnant rats were injected with poly I:C to induce a maternal immune activation (MIA). Their female offspring were subsequently exposed to a lipopolysaccharide (LPS) immune challenge during adolescence. Anhedonia, social behavior, anxiety, locomotion, and working memory were measured with the sucrose preference, social interaction, open field, elevated-plus maze, and Y-maze test, respectively. Microglia cell density was quantified by counting the number of Iba-1 positive cells in the brain cortex. Female MIA offspring were more susceptible to the LPS immune challenge during adolescence than control offspring as demonstrated by a more pronounced reduction in sucrose preference and body weight on the days following the LPS immune challenge. Furthermore, only the rats exposed to both MIA and LPS showed long-lasting changes in social behavior and locomotion. Conversely, the combination MIA and LPS prevented the anxiety induced by MIA alone during adulthood. MIA, LPS, or their combination did not change microglial cell density in the parietal and frontal cortex of adult rats. The results of our study suggest that the maternal immune activation during pregnancy aggravates the response to an immune challenge during adolescence in female rats.


Assuntos
Lipopolissacarídeos , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Ratos , Animais , Feminino , Ratos Wistar , Lipopolissacarídeos/farmacologia , Encéfalo , Comportamento Social , Comportamento Animal/fisiologia , Modelos Animais de Doenças
10.
Neurobiol Stress ; 23: 100526, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36844420

RESUMO

Adverse experiences in early life can increase mental vulnerability to immune challenges experienced later in life, which may induce the development of stress-related psychopathologies. Here, we investigated whether the combined effect of both events is higher if the first adverse experience occurs when the brain is still in development. Therefore, male Wistar rats were exposed to repeated social defeat (RSD, first hit) during juvenile age or adulthood and to an immune challenge consisting of a single injection of lipopolysaccharide (LPS, second hit) in adulthood. Control animals were not exposed to RSD, but only to the LPS challenge. Translocator protein density, a marker for reactive microglia, microglia cell density and plasma corticosterone levels were measured using in vivo [11C]PBR28 positron emission tomography, iba1 immunostaining, and corticosterone ELISA, respectively. Anhedonia, social behavior and anxiety were measured with the sucrose preference, social interaction, and open field tests, respectively. Rats exposed to RSD during juvenile age exhibited enhanced anhedonia and social interaction dysfunction after an immune challenge in adulthood. This enhanced susceptibility was not observed in rats exposed to RSD during adulthood. In addition, exposure to RSD synergistically increased microglia cell density and glial reactivity to the LPS challenge. This increase in microglia cell density and reactivity to the LPS challenge was more pronounced in rats exposed to RSD during juvenile age than in adulthood. Exposure to RSD alone in juvenile age or adulthood induced similar short-term anhedonia, a long-lasting increase in plasma corticosterone and microglial activity, but no change in anxiety and social behavior. Our findings indicate that exposure to social stress during juvenile age, but not adulthood, primes the immune system and increases the sensitivity to an immune challenge experienced later in life. This suggests that juvenile social stress can have more deleterious effects in the long term than similar stress in adulthood.

11.
Cell Mol Life Sci ; 79(8): 398, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790583

RESUMO

Glioblastoma (GBM), a highly malignant and lethal brain tumor, is characterized by diffuse invasion into the brain and chemo-radiotherapy resistance resulting in poor prognosis. In this study, we examined the involvement of the cell adhesion molecule CD146/MCAM in regulating GBM aggressiveness. Analyses of GBM transcript expression databases revealed correlations of elevated CD146 levels with higher glioma grades, IDH-wildtype and unmethylated MGMT phenotypes, poor response to chemo-radiotherapy and worse overall survival. In a panel of GBM stem cells (GSCs) variable expression levels of CD146 were detected, which strongly increased upon adherent growth. CD146 was linked with mesenchymal transition since expression increased in TGF-ß-treated U-87MG cells. Ectopic overexpression of CD146/GFP in GG16 cells enhanced the mesenchymal phenotype and resulted in increased cell invasion. Conversely, GSC23-CD146 knockouts had decreased mesenchymal marker expression and reduced cell invasion in transwell and GBM-cortical assembloid assays. Moreover, using GSC23 xenografted zebrafish, we found that CD146 depletion resulted in more compact delineated tumor formation and reduced tumor cell dissemination. Stem cell marker expression and neurosphere formation assays showed that CD146 increased the stem cell potential of GSCs. Furthermore, CD146 mediated radioresistance by stimulating cell survival signaling through suppression of p53 expression and activation of NF-κB. Interestingly, CD146 was also identified as an inducer of the oncogenic Yes-associated protein (YAP). In conclusion, CD146 carries out various pro-tumorigenic roles in GBM involving its cell surface receptor function, which include the stimulation of mesenchymal and invasive properties, stemness, and radiotherapy resistance, thus providing an interesting target for therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/patologia , Antígeno CD146/genética , Antígeno CD146/metabolismo , Glioblastoma/patologia , Glioma/patologia , Peixe-Zebra/metabolismo
12.
Elife ; 112022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35200138

RESUMO

A loss of the checkpoint kinase ataxia telangiectasia mutated (ATM) leads to impairments in the DNA damage response, and in humans causes cerebellar neurodegeneration, and an increased risk of cancer. A loss of ATM is also associated with increased protein aggregation. The relevance and characteristics of this aggregation are still incompletely understood. Moreover, it is unclear to what extent other genotoxic conditions can trigger protein aggregation as well. Here, we show that targeting ATM, but also ATR or DNA topoisomerases, results in the widespread aggregation of a metastable, disease-associated subfraction of the proteome. Aggregation-prone model substrates, including Huntingtin exon 1 containing an expanded polyglutamine repeat, aggregate faster under these conditions. This increased aggregation results from an overload of chaperone systems, which lowers the cell-intrinsic threshold for proteins to aggregate. In line with this, we find that inhibition of the HSP70 chaperone system further exacerbates the increased protein aggregation. Moreover, we identify the molecular chaperone HSPB5 as a cell-specific suppressor of it. Our findings reveal that various genotoxic conditions trigger widespread protein aggregation in a manner that is highly reminiscent of the aggregation occurring in situations of proteotoxic stress and in proteinopathies.


Cells are constantly perceiving and responding to changes in their surroundings, and challenging conditions such as extreme heat or toxic chemicals can put cells under stress. When this happens, protein production can be affected. Proteins are long chains of chemical building blocks called amino acids, and they can only perform their roles if they fold into the right shape. Some proteins fold easily and remain folded, but others can be unstable and often become misfolded. Unfolded proteins can become a problem because they stick to each other, forming large clumps called aggregates that can interfere with the normal activity of cells, causing damage. The causes of stress that have a direct effect on protein folding are called proteotoxic stresses, and include, for example, high temperatures, which make proteins more flexible and unstable, increasing their chances of becoming unfolded. To prevent proteins becoming misfolded, cells can make 'protein chaperones', a type of proteins that help other proteins fold correctly and stay folded. The production of protein chaperones often increases in response to proteotoxic stress. However, there are other types of stress too, such as genotoxic stress, which damages DNA. It is unclear what effect genotoxic stress has on protein folding. Huiting et al. studied protein folding during genotoxic stress in human cells grown in the lab. Stress was induced by either blocking the proteins that repair DNA or by 'trapping' the proteins that release DNA tension, both of which result in DNA damage. The analysis showed that, similar to the effects of proteotoxic stress, genotoxic stress increased the number of proteins that aggregate, although certain proteins formed aggregates even without stress, particularly if they were common and relatively unstable proteins. Huiting et al.'s results suggest that aggregation increases in cells under genotoxic stress because the cells fail to produce enough chaperones to effectively fold all the proteins that need it. Indeed, Huiting et al. showed that aggregates contain many proteins that rely on chaperones, and that increasing the number of chaperones in stressed cells reduced protein aggregation. This work shows that genotoxic stress can affect protein folding by limiting the availability of chaperones, which increases protein aggregation. Remarkably, there is a substantial overlap between proteins that aggregate in diseases that affect the brain ­ such as Alzheimer's disease ­ and proteins that aggregate after genotoxic stress. Therefore, further research could focus on determining whether genotoxic stress is involved in the progression of these neurological diseases.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA Topoisomerases/metabolismo , Chaperonas Moleculares/metabolismo , Dano ao DNA , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Peptídeos/metabolismo , Agregados Proteicos , Dobramento de Proteína , Proteoma/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
13.
Sci Signal ; 14(712): eabk0599, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874744

RESUMO

Salivary glands are damaged by radiotherapy for head and neck cancers, which often culminates in radiation-induced hyposalivation and xerostomia that may be permanent. Here, we identified a central role for YAP in the regenerative response of the salivary gland. Activation of the Hippo signaling pathway inhibits the phosphorylation of YAP, leading to its nuclear translocation and transcriptional activity. Using mice with salivary gland injury induced by surgical ligation and salivary gland­derived organoids, we found that YAP nuclear localization in the salivary gland epithelium changed dynamically between homeostasis and regeneration. Whereas local injury had no effect on nuclear YAP localization in saliva-producing acinar cells, it triggered nuclear accumulation of YAP in saliva-transporting ductal cells. Injury also stimulated the proliferation of ductal cells, which were mainly quiescent under homeostatic conditions and in nonregenerating areas distal to the injury site, thus enabling salivary gland regeneration. Overexpressing YAP or driving YAP nuclear translocation by inhibiting upstream Hippo pathway kinases increased the capacity of mouse and human salivary gland cells, including human cells that had been irradiated, to form lobed organoids in vitro. Our results identify a YAP-driven regeneration program in salivary gland ductal cells that could be used to promote salivary gland regeneration after irradiation-induced damage.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Serina-Treonina Quinases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases/genética , Glândulas Salivares/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP
14.
Front Cell Dev Biol ; 9: 729136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692684

RESUMO

Adult stem cells ensure tissue homeostasis and regeneration after injury. Due to their longevity and functional requirements, throughout their life stem cells are subject to a significant amount of DNA damage. Genotoxic stress has recently been shown to trigger a cascade of cell- and non-cell autonomous inflammatory signaling pathways, leading to the release of pro-inflammatory factors and an increase in the amount of infiltrating immune cells. In this review, we discuss recent evidence of how DNA damage by affecting the microenvironment of stem cells present in adult tissues and neoplasms can affect their maintenance and long-term function. We first focus on the importance of self-DNA sensing in immunity activation, inflammation and secretion of pro-inflammatory factors mediated by activation of the cGAS-STING pathway, the ZBP1 pathogen sensor, the AIM2 and NLRP3 inflammasomes. Alongside cytosolic DNA, the emerging roles of cytosolic double-stranded RNA and mitochondrial DNA are discussed. The DNA damage response can also initiate mechanisms to limit division of damaged stem/progenitor cells by inducing a permanent state of cell cycle arrest, known as senescence. Persistent DNA damage triggers senescent cells to secrete senescence-associated secretory phenotype (SASP) factors, which can act as strong immune modulators. Altogether these DNA damage-mediated immunomodulatory responses have been shown to affect the homeostasis of tissue-specific stem cells leading to degenerative conditions. Conversely, the release of specific cytokines can also positively impact tissue-specific stem cell plasticity and regeneration in addition to enhancing the activity of cancer stem cells thereby driving tumor progression. Further mechanistic understanding of the DNA damage-induced immunomodulatory response on the stem cell microenvironment might shed light on age-related diseases and cancer, and potentially inform novel treatment strategies.

15.
Open Biol ; 11(4): 200296, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33878947

RESUMO

Genome instability and loss of protein homeostasis are hallmark events of age-related diseases that include neurodegeneration. Several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis are characterized by protein aggregation, while an impaired DNA damage response (DDR) as in many genetic DNA repair disorders leads to pronounced neuropathological features. It remains unclear to what degree these cellular events interconnect with each other in the development of neurological diseases. This review highlights how the loss of protein homeostasis and genome instability influence one other. We will discuss studies that illustrate this connection. DNA damage contributes to many neurodegenerative diseases, as shown by an increased level of DNA damage in patients, possibly due to the effects of protein aggregates on chromatin, the sequestration of DNA repair proteins and novel putative DNA repair functions. Conversely, genome stability is also important for protein homeostasis. For example, gene copy number variations and the loss of key DDR components can lead to marked proteotoxic stress. An improved understanding of how protein homeostasis and genome stability are mechanistically connected is needed and promises to lead to the development of novel therapeutic interventions.


Assuntos
Suscetibilidade a Doenças , Instabilidade Genômica , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Proteostase , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Animais , Dano ao DNA , Reparo do DNA , Expressão Gênica , Predisposição Genética para Doença , Humanos , Doenças Neurodegenerativas/patologia , Estresse Oxidativo , Fenótipo , Agregação Patológica de Proteínas , Proteostase/genética
16.
NPJ Regen Med ; 6(1): 4, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526786

RESUMO

Dysfunction of the salivary gland and irreversible hyposalivation are the main side effects of radiotherapy treatment for head and neck cancer leading to a drastic decrease of the quality of life of the patients. Approaches aimed at regenerating damaged salivary glands have been proposed as means to provide long-term restoration of tissue function in the affected patients. In studies to elucidate salivary gland regenerative mechanisms, more and more evidence suggests that salivary gland stem/progenitor cell behavior, like many other adult tissues, does not follow that of the hard-wired professional stem cells of the hematopoietic system. In this review, we provide evidence showing that several cell types within the salivary gland epithelium can serve as stem/progenitor-like cells. While these cell populations seem to function mostly as lineage-restricted progenitors during homeostasis, we indicate that upon damage specific plasticity mechanisms might be activated to take part in regeneration of the tissue. In light of these insights, we provide an overview of how recent developments in the adult stem cell research field are changing our thinking of the definition of salivary gland stem cells and their potential plasticity upon damage. These new perspectives may have important implications on the development of new therapeutic approaches to rescue radiation-induced hyposalivation.

17.
Cancers (Basel) ; 13(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498403

RESUMO

Normal tissue side effects remain a major concern in radiotherapy. The improved precision of radiation dose delivery of recent technological developments in radiotherapy has the potential to reduce the radiation dose to organ regions that contribute the most to the development of side effects. This review discusses the contribution of regional variation in radiation responses in several organs. In the brain, various regions were found to contribute to radiation-induced neurocognitive dysfunction. In the parotid gland, the region containing the major ducts was found to be critical in hyposalivation. The heart and lung were each found to exhibit regional responses while also mutually affecting each other's response to radiation. Sub-structures critical for the development of side effects were identified in the pancreas and bladder. The presence of these regional responses is based on a non-uniform distribution of target cells or sub-structures critical for organ function. These characteristics are common to most organs in the body and we therefore hypothesize that regional responses in radiation-induced normal tissue damage may be a shared occurrence. Further investigations will offer new opportunities to reduce normal tissue side effects of radiotherapy using modern and high-precision technologies.

18.
Front Aging Neurosci ; 12: 587989, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281599

RESUMO

Evidence suggests that extracellular vesicles (EVs) act as mediators and biomarkers of neurodegenerative diseases. Two distinct forms of Alzheimer disease (AD) are known: a late-onset sporadic form (SAD) and an early-onset familial form (FAD). Recently, neurovascular dysfunction and altered systemic immunological components have been linked to AD neurodegeneration. Therefore, we characterized systemic-EVs from postmortem SAD and FAD patients and evaluated their effects on neuroglial and endothelial cells. We found increase CLN-5 spots with vesicular morphology in the abluminal portion of vessels from SAD patients. Both forms of AD were associated with larger and more numerous systemic EVs. Specifically, SAD patients showed an increase in endothelial- and leukocyte-derived EVs containing mitochondria; in contrast, FAD patients showed an increase in platelet-derived EVs. We detected a differential protein composition for SAD- and FAD-EVs associated with the coagulation cascade, inflammation, and lipid-carbohydrate metabolism. Using mono- and cocultures (endothelium-astrocytes-neurons) and human cortical organoids, we showed that AD-EVs induced cytotoxicity. Both forms of AD featured decreased neuronal branches area and astrocytic hyperreactivity, but SAD-EVs led to greater endothelial detrimental effects than FAD-EVs. In addition, FAD- and SAD-EVs affected calcium dynamics in a cortical organoid model. Our findings indicate that the phenotype of systemic AD-EVs is differentially defined by the etiopathology of the disease (SAD or FAD), which results in a differential alteration of the NVU cells implied in neurodegeneration.

19.
Cell Death Dis ; 11(10): 854, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056980

RESUMO

Radiotherapy for head and neck cancer is associated with impairment of salivary gland function and consequent xerostomia, which has a devastating effect on the quality of life of the patients. The mechanism of radiation-induced salivary gland damage is not completely understood. Cellular senescence is a permanent state of cell cycle arrest accompanied by a secretory phenotype which contributes to inflammation and tissue deterioration. Genotoxic stresses, including radiation-induced DNA damage, are known to induce a senescence response. Here, we show that radiation induces cellular senescence preferentially in the salivary gland stem/progenitor cell niche of mouse models and patients. Similarly, salivary gland-derived organoids show increased expression of senescence markers and pro-inflammatory senescence-associated secretory phenotype (SASP) factors after radiation exposure. Clearance of senescent cells by selective removal of p16Ink4a-positive cells by the drug ganciclovir or the senolytic drug ABT263 lead to increased stem cell self-renewal capacity as measured by organoid formation efficiency. Additionally, pharmacological treatment with ABT263 in mice irradiated to the salivary glands mitigates tissue degeneration, thus preserving salivation. Our data suggest that senescence in the salivary gland stem/progenitor cell niche contributes to radiation-induced hyposalivation. Pharmacological targeting of senescent cells may represent a therapeutic strategy to prevent radiotherapy-induced xerostomia.


Assuntos
Glândulas Salivares/efeitos da radiação , Nicho de Células-Tronco/efeitos da radiação , Xerostomia/patologia , Compostos de Anilina/farmacologia , Animais , Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos da radiação , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/patologia , Glândulas Salivares/patologia , Via Secretória/efeitos dos fármacos , Via Secretória/efeitos da radiação , Nicho de Células-Tronco/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Células-Tronco/efeitos da radiação , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação , Xerostomia/tratamento farmacológico , Xerostomia/etiologia
20.
Mol Oncol ; 14(7): 1538-1554, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32521079

RESUMO

Radiotherapy remains a mainstay of cancer treatment, being used in roughly 50% of patients. The precision with which the radiation dose can be delivered is rapidly improving. This precision allows the more accurate targeting of radiation dose to the tumor and reduces the amount of surrounding normal tissue exposed. Although this often reduces the unwanted side effects of radiotherapy, we still need to further improve patients' quality of life and to escalate radiation doses to tumors when necessary. High-precision radiotherapy forces one to choose which organ or functional organ substructures should be spared. To be able to make such choices, we urgently need to better understand the molecular and physiological mechanisms of normal tissue responses to radiotherapy. Currently, oversimplified approaches using constraints on mean doses, and irradiated volumes of normal tissues are used to plan treatments with minimized risk of radiation side effects. In this review, we discuss the responses of three different normal tissues to radiotherapy: the salivary glands, cardiopulmonary system, and brain. We show that although they may share very similar local cellular processes, they respond very differently through organ-specific, nonlocal mechanisms. We also discuss how a better knowledge of these mechanisms can be used to treat or to prevent the effects of radiotherapy on normal tissue and to optimize radiotherapy delivery.


Assuntos
Lesões por Radiação/prevenção & controle , Lesões por Radiação/terapia , Radioterapia/efeitos adversos , Humanos , Especificidade de Órgãos/efeitos da radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...